Blog

AEROSPACE SUPPLY CHAIN 101

AEROSPACE SUPPLY CHAIN 101

The aerospace supply chain is quite complex. This should come as no surprise given that there are between 2 and 6 million parts that must be assembled in order to successfully build various types of aircraft. With so many components and materials involved, each supplier must fulfill its role in order to achieve the final product. The thousands of suppliers which manufacture these 6 million parts and contribute to this complicated process are divided into 3 tiers. Each tier plays a significant role in the supply chain and contributes to the successful manufacturing of a finished product, i.e., an aircraft.

Aircraft are produced by OEMs (Original Equipment Manufacturers). The OEMs, companies like Boeing, Airbus, Lockheed Martin, and Raytheon, not only supply their products to airline companies like Delta and Southwest Airlines, and private jet companies like Gulfstream and Cessna, they may also supply aircraft in support of the Military.

With millions of parts being made by thousands of different companies, a strict set of requirements is essential to ensure that safety standards are met, and uniformity is guaranteed. In this way, there can be certainty that all the individual pieces will work together to create a complete unit. Not only must the component parts be made to meet all the specs, but they must also flow through the supply chain in a reliable way so that each of the seals and the fittings, the hardware and the finishes, the gaskets and the ducting, get to where they need to be when they need to be there.

Furthermore, each of the suppliers in the supply chain, no matter which tier, must also be certified and registered in order to participate in the supply chain.

The Three Tiers

Tier 1

Tier 1 companies often work hand in hand with OEMs during the designing period. They also typically manufacture the major components or systems utilizing parts or subassemblies from the Tier 2 supply chain. These components produced by the Tier 1 manufacturers are the last systems that are delivered to the OEMs.

The Tier 1 companies that supply directly to the aerospace industry, are the most essential in the supply chain. They manufacture a wide array of vital finished products such as engines, wings, fuselage, control systems, landing gear, braking systems, electronic warfare systems, and interior cabin products.

These organizations are the key drivers of the supply chain. They are responsible for ensuring the entire operation is being effectively and efficiently managed and that all the required government guidelines are being followed. Tier 1 companies form the backbone of the supply chain mechanism and are effectively responsible for ensuring that the entire operation is being carried out properly.

Tier 2

Tier 2 companies are responsible for manufacturing the parts and sub-assemblies used by Tier 1 companies. They are of equal importance to the Tier 1 companies, as they too play a critical role in support of the supply chain. Tier 2 companies are often smaller in size and magnitude as compared to their Tier 1 counterparts but are quite sophisticated in their capabilities and operations. These manufacturers acquire parts from Tier 3 suppliers and forward their end products to Tier 1, making them an essential link in the chain.

Tier 2 suppliers usually shoulder much of the responsibility regarding adherence to safety, compliance, and standards. They are also vital in ensuring the rate of flow of materials and production. These companies provide critical components such as Airfoils, tires, missile nose cones, airframe structures, transmissions, and flight controls.

 

Tier 3

These manufacturers are often larger than Tier 2 supplies. They are responsible for producing and shipping parts and components directly to Tier 2 companies to be used in various components and subsystems. Tier 3 companies play an important role in the supply chain and they too impact the successful completion of an aircraft.

A Tier 3 company may be a smaller machine shop that produces thousands of parts that ultimately serve a critical purpose. They may also be a manufacturer that produces mission-critical components and software, not just nuts and bolts.

Tier 3 manufacturers supply products and components such as instrumentation fittings and tubing, hydraulic fittings and hose, and high strength fasteners and pins.

All these examples of major assemblies, sub-assemblies and components represent the enormous and complex processes that are involved in building aircraft.

Suppliers as Strategic Partners

For manufacturing success, OEMs must work to build strategic partnerships with multiple sources and suppliers across all tiers of the aerospace supply chain. They must consider each tier and select the suppliers that excel. With so many manufacturers involved in such a complex system, each supplier in each tier must do their part in order to ensure a functioning and effective aerospace supply chain.

 

 

What Can Be Expected When Buying Customized And Handmade Products?

Newsletter Sign Up

RCF Technologies Newsletter Sign Up

What Can Be Expected When Buying Customized and Handmade Products?

BY PAULIE ROSE

Side by side photos of hands of RCF Technologies worker working on orange circular part, next to hands of artisan working on orange circular clay pot

Customization vs. Handmade

The concept of customization has been adopted by many businesses over the last few decades. It was incorporated to promote exclusivity. Customized products were a status symbol, a vehicle to make consumers with massive budgets feel special.

Handmade products, on the other hand, have been available forever! And when we think of buying handmade products, we rarely think of large corporations like those who have embraced customization.

When we imagine “handmade products” we envision:

  • One-of-a-kind items
  • Personalized products
  • Home-made goods
  • Unique finds not available anywhere else
  • Intricate designs
  • Pieces of art
  • Beautiful objects

Manufacturing businesses, making industrial components like high-temperature seals, ducting, gaskets, and connectors/couplings are not usually the types of makers you would associate with handmade treasures.

But there is a place where these two worlds overlap most extraordinarily: RCF Technologies.

Side by side photo. hands in blue gloves working on component RCF Technologies part and artisans hand working on pottery piece

5 Benefits of Customized Handmade Products

Whether you are an individual looking for a beautifully hand-crafted artistic creation like a personalized, hand-carved, wooden chess set or an engineer looking for a custom-built, high-temperature solution to a design challenge where no off-the-shelf product exists, you really want the same things!

  1. Excellent quality
  2. Custom built to your needs
  3. Personalized attention
  4. A human contact who is accessible and available
  5. A partner who is equally invested in a beautifully produced outcome

Side by side photos of hands of RCF Technologies worker taking orange Rishon part out of square mold and artisan hands working on a painting in square frame

When you buy directly from the person who creates your handmade item, you know you are going to get exactly what you want.

YOU KNOW at any point in the process, you can pick up the phone and connect directly with the person making your piece!

YOU KNOW when you speak directly to the maker, any questions you have will be answered, because the maker knows their product inside out and will be able to give you the best advice.

YOU KNOW that you will get to partner directly with the maker at every step of the design. You will be able to discuss the particulars and benefit from the professional expertise and experience of the maker so that the final product is a piece of art that will be exactly as you want it both in form and function.

YOU KNOW that your product was made with personalized care, attention, and love. While you are going to receive an item that meets print perfectly, each is also personally checked and inspected by individuals who care about the quality of what they make.

YOU KNOW you are dealing directly with the boss, not a call center employee whose bosses’ boss surely doesn’t know your name or care about your individual needs.

YOU KNOW you are not another number, buying another widget.

YOU KNOW you are a valued individual who will be treated with respect.

YOU KNOW you will be the proud recipient of a product that was designed and developed just for you. A product that meets your specific needs.

Side by side photos of RCF Technologies worker working on a spool of Rishon material and a woman artisan working on a loom

Why Customized Handmade Products Are Better

There is no doubt that a product made by hand will be better in all sense of design and workmanship.

At RCF Technologies, each of our clients receives handcrafted solutions which are uniquely personalized, designed, and manufactured with attention and care at a competitive price.

EACH of our clients can tap into our teams’ more than 137 years of combined industry experience.

EACH of our clients is guaranteed expert design collaboration resulting in customized solutions that will not only meet their needs but will have been built to help them achieve their desired optimal performance.

EACH of our clients knows that we are trusted partners, with documented success and have been serving industry leaders like Sikorsky, GE, Bell, Honeywell, Boeing, and others for more than 45 years.

If you would like to discuss your customized handmade solution, please contact us at RCF Technologies today!

✅ Connect on LinkedIn
✅ Email me at prose@rcftechnologies.com
✅ Visit our website at www.rcftechnologies.com
✅ Call 912.537.1115

 

High Temp, Fireproof, Flexible Material: Rishon® vs. Rubber

Newsletter Sign Up

RCF Technologies Newsletter Sign Up

Rubber

Rubber is an essential material used in several industries.

Rubber has played an important role throughout the development of human civilization and continues to be of great importance today.  The use of rubber is so significant that the global market size of rubber stood at USD 40.77 Billion in 2019 and is projected to reach USD 51.21 Billion by 2027.  Rishon components have replaced rubber components in the aerospace industry (as well as others), in a variety of applications and for several important reasons.

What is Rishon?

Rishon is a material which was created by RCF Technologies in 1975. It is a combination of a proprietary silicone and fiberglass (in most cases) although other substrates can be used. The elastomer is coated onto the fabric and forced through the weave of the fabric under heat and pressure forming a homogeneous material.

Rishon material can be:
  • Flexible or rigid
  • Has an operating temperature range of -170°F to +850°F
  • Is fireproof (Rishon is an FAA approved Fire Barrier in thicknesses as low as .037”)
  • Is chemically compatible with most fluids (including Skydrol)
  • Is an excellent vulcanizing material
  • Absorbs sound and vibration
  • Insulates against heat and flame
  • Is electrically nonconductive, but can be made electrically conductive with almost no added weight

 

Rishon is used primarily in the aerospace industry, though has also been used in the automotive, Industrial, Marine and Medical sectors as well. Rishon material is used by RCF Technologies to design and manufacture components such as:

These products are principally used for applications requiring high temperatures or fireproofing and offer longer life and lighter weight than most components made utilizing other materials.

 

Rubber Temperature Table

Elastomer
Low F
High F
Rishon® -170° 850°
Natural Rubber  -67° 180°
Neoprene -50° 275°
Silicone -70° 570°
Nitrile -30° 250°
EPDM -60° 300°
SBR -50° 225°
Butyl -75° 250°
Fluorosilicone -100° 350°

Natural Rubber

Rubber is a material that was originally made from natural sources such as the rubber tree and other plants (including dandelions which produce the latex that natural rubber is made from).

Natural rubber has:
  • Good durability
  • A temperature range of -67°F to +180°F
  • Is elastic
  • Is flexible
  • Is a good electrical insulator
  • Is resistant to many corrosive substances
  • Has resistance to degrading, abrasions, and surface friction

Natural rubber is used in many consumer and industrial items, including tires, gloves, some types of foam rubber, flooring and roofing, balls, and insulation.

 

Neoprene

Neoprene is a synthetic rubber made up of carbon, hydrogen, and chlorine polymers and was invented in 1930. It is used in applications that face harsh conditions and a lot of wear, such as automotive and industrial applications.

Neoprene has:
  • A temperature range of -50°F to +275°F
  • Is resistant to oil and solvents
  • Is chemically inert
  • Has high tensile strength
  • Is flexible
  • Is weather and flame resistant

Neoprene can however absorb water over time and does not work well as an electrical insulator.

 

Silicone Rubber

Silicone rubber is:
  • Generally stable
  • Non-reactive to most chemicals
  • Has a temperature range of -70°F to 570°F
  • Is resistant to ultraviolet rays, ozone, and fire.

Silicone rubber is manufactured in many different colors and is very malleable, available as both solid and liquid products.

 

Nitrile Rubber

Nitrile rubber has:
  • A temperature range of -30°F to +250°F
  • Is resistant to oil and water
  • Is quite durable

 

EPDM Rubber

EPDM rubber is a synthetic rubber compound and has:
  • A temperature range of -60°F to +300°F
  • Insulates
  • Reduces noise

EPDM rubber however, is not resistant against petroleum-based oils, mineral oils, and some other lubricants.

 

SBR Rubber

SBR rubber has:
  • A temperature range of -50°F to +225°F
  • Is hard and durable
  • Is resistant to some fluids

 

Butyl Rubber

Butyl rubber, also known as isobutylene isoprene, has:
  • A temperature range of -75°F to +250°F
  • Has low moisture and gas permeability
  • Has good shock absorption

 

Fluorosilicone Rubber

Fluorosilicone rubber, also known as FVMQ, has:
  • A temperature range of -100°F to +350°F
  • Is resistant to transmission fluids, engine oils, fire, synthetic lubricants, and ozone

Both natural and artificial rubbers are used in a variety of applications and across most industries. Each rubber varies regarding elasticity, electrical insulating properties, resistance to impact, water, cold, and abrasion, temperature range and more.

For more information about Rishon Material, and RCF Technologies products, please contact us today!